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2,3,7,8-Tetrachlorodibenzo-p-dioxin
(TCDD) is the most toxic congener of a
large class of toxic pollutants, collectively
known as halogenated dioxins (1,2). The
dioxins, together with the halogenated
dibenzofurans, polychlorinated biphenyls,
and polybrominated biphenyls, belong to a
larger class of toxins collectively referred to
as the halogenated aromatic hydrocarbons
(HAHs). HAHs are characterized by a
common set of toxic effects and biochemical

changes, including immunosuppression,
carcinogenesis, teratogenesis, and induction
of cytochrome CYP1A1 and other compo-
nents of xenobiotic detoxification enzyme
systems. One of the most prominent
symptoms of poisoning in many species is
a marked loss ofbody weight called "wasting
syndrome." In the guinea pig this wasting
syndrome appears to be directly correlated
to the lethal effects of TCDD (LD50 for
males, 0.6 pg/kg) (3). Associated with this
wasting syndrome is a decrease in food
intake and indications of malnourishment.
Nevertheless, poisoned animals retain
normal patterns of carbohydrate, lipid, and
protein metabolism (4). Initially it was
hypothesized that TCDD reduced intestinal
absorption of nutrients, and it was assumed
that reduction of absorbed nutrients was
responsible for weight loss. Nevertheless,
administration of parenteral nutrition to
poisoned animals, although increasing
body weight, did not prevent them from
dying (5). Reduction of caloric intake in
untreated animals to produce weight loss
matching that of TCDD-treated animals
did not produce the lethal effects seen in
TCDD-poisoned animals (6). Peterson et al.
(4) concluded that treated animals acquired
a lower "set point" for maintenance of
their body weight.

Recently we reported that TCDD
inhibits glucose uptake in guinea pig adipose
and guinea pig pancreatic tissue, both in
vivo and in vitro, using isolated adipose
and pancreas tissue culture (7,8). The inhi-
bition of glucose uptake in adipose cells
provides a plausible explanation for the loss
of adipose tissue in vivo in TCDD-induced
wasting syndrome. Adipose tissue contains
low levels of glycerol kinase, which has
been estimated in humans as being able to
convert only 2.5-3.5% of the glycerol
released from triglyceride breakdown and
turnover into the 3-phosphoglycerol neces-
sary for the reesterification of fatty acids to
triglycerides (9). The breakdown of glucose
to generate 3-phosphoglycerol, therefore,
serves as the key rate-limiting reaction for
the overall lipogenic process in adipose tissue,
with a loss of glucose uptake making the
reesterification of fatty acids impossible,
thus leading to the loss of stored triglyc-
erides. Because of the potential importance

of reduced glucose uptake in TCDD-gener-
ated wasting syndrome, we have extended
these observations in the guinea pig to
another TCDD-sensitive species, the
mouse, while establishing an in vitro cultured
cell model for dioxin effects that is more
convenient for experimental manipulation.
We found the NIH 3T3 LI preadipocyte
cell line contains a cytosolic protein whose
properties correspond to those of the Ah
receptor based on results in sucrose
density-gradient experiments with tritiated
TCDD and DNA gel shift experiments
using a dioxin responsive element (DRE)
(unpublished data). We therefore examined
glucose transport in the NIH 3T3 LI
adipocyte cell line and found that TCDD
inhibits glucose transport in a dose- and
time-dependent manner. The facilitated
diffusion of D-glucose across cell mem-
branes is mediated by a set of stereospecific
transport proteins referred to as "GLUTs."
Two glucose transporters, GLUT 1 and
GLUT 4, are expressed in the NIH 3T3 LI
preadipocyte cell line (10) and are good
candidates for regulation by TCDD.

Materials and Methods
We purchased 3-O-methyl-D-[1-3H] glu-
cose (3H-Me-glc) (2.74 and 2.34
Ci/mmol) from Amersham (Arlington
Heights, IL). Dulbecco's phosphate-
buffered saline without Ca' and Mg+2,
calf serum, and antibiotics were purchased
from Gibco/BRL (Grand Island, NY). All
other biochemicals were purchased from
Sigma Chemical Co. (St Louis, MO).
TCDD was donated to the laboratory by
Dow Chemical Co. (Midland, MI), and
the polychlorinated biphenyl congeners
were kindly donated by S. Safe (Texas
A&M).

We obtained the NIH 3T3 LI
preadipocyte cell line from ATCC (culture
no. CCL 92.1). Cells were cultured and
differentiated as described by Student et al.
(11), with minor modifications. Cells were
passaged three times without being allowed
to reach confluence and then frozen in
aliquots of 107 cells/vial for future use. For
any particular experiment, a frozen aliquot
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of cells was grown to confluence on 60-mm
dishes in a 5% Co2 atmosphere in a basal
medium consisting of Dulbecco's Modified
Eagle's Medium (DMEM) high glucose
without sodium pyruvate (Gibco, Grand
Island, NY), 10% calf serum, 3.7 mg/ml
sodium bicarbonate, 1000 U/ml penicillin
G, and 100 pg/ml streptomyosin. We then
cultured the cells for three more days in a
differentiating medium that consisted of the
basal medium plus 10 pg/ml insulin, 0.5
mM methylisobutyl xanthine, and 0.25 pM
dexamethasone. The medium was then
replaced with the maintenance medium
which consisted of the basal medium con-
taining 10 pg/ml insulin, and the cells were
maintained for 2-10 days before being used
in experiments. We treated cells with
TCDD or PCB congeners for specified
periods of time by adding test compounds
in acetone to the maintenance medium.
The volume of test compound added was
0.1% of total volume of media. We changed
maintenance medium every 3 days. There
were approximately 1.5 x 106 cells per 60-
mm dish after differentiation.

Glucose uptake was measured using the
methods of Foley et al. (12) and Horuk et al.
(13), with minor changes. The media used
for the glucose uptake assays was
DMEM/no glucose (Gibco/BRL, Grand
Island, NY), supplemented with 4.026 g/l
sodium pyruvate, 0.584 g/l glutamate, and
3.7 g/l sodium bicarbonate. Medium was
prepared, adjusted to pH 7.4, and filter
sterilized before use. After treatment with
test compounds or vehicle the cell mono-
layers were washed twice with DMEM/no
glucose. The cells were then incubated at
37°C for 30 min with 2 ml DMEM/no
glucose supplemented with 1 pCi/mL of 3-
O-methyl-D-[ 1-3H] glucose (3H-Me-glc)
and specified concentrations of unlabeled
D-glucose. We then washed the cell mono-
layers two times with DMEM/no glucose,
collected the cell monolayer with a cell
scraper in 0.4 ml of 1.0% w/v sodium
dodecyl sulfate, and quantified radioactivity
by liquid scintillation counting using
Scint-A XF aqueous compatible liquid
scintillation solution, (Packard Instrument
Co., Meriden, CT). Determination of dis-

Table 1. Total glucose uptake at various glucose concentrations in NIH 3T3 LI cells treated with 10-8 M
TCDD for 24 hr

0-Glucose Glucose uptake (pg 3-O-methyl-D-I_-3H] glucose/1.5 million cells)a
concentration (mM) Control TCDDb TCDD effect (% of control)
0 273.0 ± 25.6 252.0 ± 33.1 92.3
1.6 181.8 ± 29.3 220.0 ± 39.4 121.0
3.3 205.9 ± 14.8 198.1 ± 22.4 96.2
6.7 172.8 ± 5.7 155.9 ± 4.7c 90.2

13.3 178.0 ± 43.1 145.0 ± 27.6 81.5

a30-min incubation; means ± 1 SD; n= 3.
b\When data are pooled for all control versus TCDD-treated values, TCDD-treated cells had less 3H-Me-gic
uptake than controls (p < 0.01, two-tailed paired Student's t-test).
CFor the 6.7 mM glucose concentration, TCDD's effect on 3H-Me-glc uptake was significantly decreased
compared to the corresponding control (p < 0.05, two-tailed Student's t-test).

Table 2. Inhibition of glucose transport by TCDD in differentiated and undifferentiated NIH 3T3 Li
preadipocytes

Glucose uptake (pg 3H-methyl-glucose/1.5 million cells)b
Control TCDD

Net specific Net specific
State of cella Alone +Cyto-Bc uptaked Alone +Cyto-Bc uptaked
Differentiated 102.0 ± 10.3 73.0 ± 7.2 29.0 55.8 ± 7* 52.7 ± 4.6 3.1

(10% of control)

Undifferentiated 48.3 ± 3.1 22.0 ± 1.0 26.2 43.8 ± 5.2 27.9 ± 5.4 15.9
(61% of control)

"Differentiated cells were treated for 72-hr period with media containing 0.25 pM dexamethasone, 10
pg/ml insulin, and 0.5 mM methylisobutyl xanthene. Undifferentiated cells were grown to confluence in
DMEM high glucose with 10% calf serum. Lipisomes are evident in the cells after treatment with the dif-
ferentiating media.
b30-min incubation; means ± 1 SD; n = 3.
CFor experiments involving cyto-B (cytochalasin B), 70 pg of cytochalasin B in 10 pl of ethanol were
added to each dish of cells and incubated for 1 hr before addition of TCDD in acetone or acetone alone
(control) and then incubated for 3 hr before assay for glucose transport.
Glucose uptake assays employed 1 pCi of 3H-Me-glc and 13.3 mM cold glucose. Net uptake of 3H-Me-

gIc is the nonspecific binding of 3H-Me-gIc determined by addition of cytochalasin B subtracted from
corresponding control or TCDD values.
*Significantly different from control at p 0.05 (two-tailed Student's t-test).

integrations per minute was made based on
quench curves.

After initial experiments (Table 1), glu-
cose uptake assays included determination
of 3H-Me-glc nonspecific binding using a
susceptibility test for cytochalasin B
(Sigma, St Louis, MO) as follows.
Cytochalasin B was administered to the
cell monolayers by adding of 70 pg of
cytochalasin B in 10 pl of absolute ethanol
to each 60-mm plate 4 hr before glucose
uptake assays. We added test compounds
to the media 1 hr later (3 hr before glucose
uptake assays) as described above. The por-
tion of 3H-Me-glc uptake that was inhibited
by this concentration of cytochalasin B was
defined as the uptake activity through the
glucose transporter proteins.

Cells were seeded on 60-mm plates and
differentiated as described above. They
were subsequently treated for 72 hr with
either hormone alone or hormone plus

810-° M TCDD. Hormone concentrations
in maintenance medium were 1 ng/ml
tetraiodothyronine (T4), 10 ng/ml tri-
iodothyronine (T3), 10 ng/ml tumor
necrosis factor-a (TNFa), and 1 pg/ml of
antibody against TNFa. Glucose uptake
assays were performed as described above.

Results
Table 1 is a tabulation of the results of initial
experiments to determine the inhibitory
effect ofTCDD on glucose uptake in NIH
3T3 LI cells using various concentrations
of unlabeled D-glucose in the glucose
uptake assay. After 24 hr of treatment with
10-8 M TCDD, treated cells showed signif-
icantly decreased uptake of 3H-Me-glc
compared to control (for all controls versus
all treated cells, p < 0.01, two-tailed, paired
Student's t-test). When comparing effects
ofTCDD at individual glucose concentra-
tions, a statistically significant reduction in
glucose uptake occurred at the 6.7 mM D-
glucose concentration (p . 0.05, two-tailed
Student's t-test). Furthermore, there is a
clear trend for the effect ofTCDD on glu-
cose uptake to become more pronounced
with increasing concentrations of unla-
beled D-glucose. Based on these results, a
physiologically relevant concentration of
13.3 mM unlabeled D-glucose was selected
for remaining uptake assays.

These initial assays (Table 1) quantified
the total amount of 3H-Me-glc recovered
with the LI cells after washing and include a
significant portion of3H-Me-glc nonspecific
binding. The portion of 3H-Me-glc non-
specific binding was determined by pre-
treating some replicates of LI cells with
cytochalasin B, a specific inhibitor of facili-
tative glucose transporters (14), before
measuring uptake of 3H-Me-glc. These
experimental results are tabulated in Table 2.
From about 50% to about 90% of the
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Figure 1. Dose response for the inhibition of glu-
cose uptake by TCDD after a 3-hr exposure.
Glucose uptake assays employed 1 pCi of 3H-Me-
GIc and 13.3 mM cold glucose. Net uptake of 3H-
Me-glc is the nonspecific binding of 3H-Me-glc
determined by addition of cytochalasin B sub-
tracted from corresponding control or TCDD val-
ues. Vertical bars indicate the range of standard
error. Statistically significant decrease in uptake
occurred starting at 10- M TCDD (p.0.05,
Student's t-est).
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Figure 2. Time course for the inhibition of glucose
uptake b3y TCDD. Glucose uptake assays employed
1 pCi of H-Me-glc and 13.3 mM cold glucose. Net
uptake of 3H-Me-glc is the nonspecific binding of
3H-Me-gic determined by addition of cytochalasin
B subtracted from corresponding control or TCDD
values. Cells were treated with 10-8 M TCDD for
specified times before glucose uptake assays. Ver-
tical bars indicate the range of standard error. Statis-
tically significant decrease in uptake occurred
starting at 30 min (p.0.05, student's t-test).

Table 3. Effect of the Ah receptor blocker 4,7-phenanthroline on TCDD-mediated reduction of glucose
transport

Glucose uptake (pg 3H-methyl-glucose/1.5 million cells)b
Without With Net

Assay conditions8 cytochalasin B cytochalasin B specific uptake
Control (acetone vehicle) 432.2 ± 59.1 372.2 ± 53.8 60.0
10-8 M TCDD 343.4 ± 22.2* 337.5 ± 35.1 5.9
(3-hr incubation) (9.8% of control)

4,7-Phenanthroline 526.3 ± 18.8* 372.2 ± 53.8c 154.1
4,7-Phenanthroline 467.5 ± 60.8 337.5 ± 35.1 130.0
+ 108 M TCDD (84.4% of 4,7-phen-
(3-hr incubation) anthroline control)

OGlucose assays employed 1 pCi 3H-Me-gic plus 13.3 mM cold glucose. Cells were incubated with or
without 10 pM 4,7-phenanthroline for 1 hr, followed by addition of vehicle control or TCDD in acetone and
incubation for 3 hr. Glucose assays were then performed as described in materials and methods using
13.3 mM cold D-glucose. Nonspecific binding of 3H-Me-Glc was determined by adding cytochalasin B to
cell cultures as described in Materials and Methods.
30-min incubations; means ± 1 SD; n = 5.
"Used average value for nonspecific binding of 3H-Me-Glc based on cytochalasin B value either from
control or TCDD-treated cells.
*Significantly different from controls at p.0.05 (two-tailed Student's t-test).

Table 4. Comparison of the effects of TCDD and different PCB congeners on reduction of glucose trans-
port in NIH 3T3 Li preadipocytes

Glucose uptake (pg 3H-methyl-glucose/1.5 million cells)b
With Without Net

Compound tested" cytochalasin B cytochalasin B specific uptake
Control (acetone vehicle) 137.5 ± 36.7 73.3 ± 35.4 64.2
10" M TCDD 110.2 ± 26.1 103.6 ± 47.9 6.6
(3-hr incubation) (10.3% of control)

10-7 M 3,3',4,4'-Tetrachloro- 104.7 ± 11.7 85.9 ± 20.9 18.8
biphenyl (29.3% of control)
(3-hr incubation)

10'7 M 2,2',5,5'-Tetrachloro- 117.2 ± 16.7 90.7 ± 30.0 26.5
biphenyl (41.3% of control)
(3-hr incubation)

'Glucose assays employed 1 pCi 3H-Me-glc plus 13.3 mM cold glucose. Cells were incubated with or
without 70 pg cytochalasin B for 1 hr, followed by addition of vehicle control, TCDD, or PCB congeners in
methanol and incubation for 3 hr Glucose assays were then performed as described in Materials and
Methods. Nonspecific binding of H-Me-glc was determined by addition of cytochalasin B, and glucose
uptake determined as the difference between total disintegrations per minute and disintegrations per
minute with cytochalasin B treatment.
b30-min incubations; means ± 1 SD; n = 4.

total radioactivity recovered is 3H-Me-glc
nonspecific binding. Accordingly, TCDD-
mediated inhibition of glucose uptake
changes from about 10% for data not cor-
rected for nonspecific binding to about
90% for data corrected for nonspecific
binding (Table 2). TCDD significantly
reduced glucose uptake (p < 0.05, two-
tailed Student's t-test) for differentiated
cells. For undifferentiated 3T3 LI cells the
magnitude of TCDD-mediated reduction
in glucose was less and was not significant
at the p < 0.05 level.

Figure 1 shows the results of a repre-
sentative experiment to determine the dose
response for TCDD-mediated inhibition
of glucose uptake after a 3-hr incubation of
3T3 LI cells with various concentrations of
TCDD. Glucose uptake assays included
13.3 mM cold D-glucose. Data are present-
ed as percentage of control ± 1 SE (n = 5)
and have been corrected for nonspecific
binding of 3H-Me-glc. The control value
was 29.5 pg 3H-Me-glc/1.5 million
cells/30-min incubation. A clear decline in
specific glucose uptake with dose is evident,
which becomes statistically significant at
10-9 M (p < 0.05, two-tailed Cochran t-
test).

Figure 2 depicts the results of a repre-
sentative experiment on the time course of
inhibition of glucose transport by incuba-
tion of 3T3 Li cells with 10-8 M TCDD.
Results are the average of four replicates
± 1 SE and have been corrected for non-
specific binding of 3H-Me-glc and displayed
as percentage of control. The time-zero
control value is 46.7 pg 3H-Me-glc/1.5
million cells/30-min incubation. Glucose
uptake assays included 13.3 mM cold D-
glucose. The TCDD-induced decline in
glucose transport is significant (p < 0.05,
two-tailed, Cochran t-test) by 30 min.
Glucose uptake remained depressed after
72 hr with continuous exposure to 10-8 M
TCDD (data not shown).

Tables 3 and 4 present data from a
series of experiments designed to investi-
gate whether TCDD-induced reduction in
glucose transport involves the Ah receptor,
a cytosolic TCDD receptor and nuclear
transcription factor known to regulate
transcription of a number of genes by
HAHs. We first investigated whether 4,7-
phenanthroline, an Ah receptor blocker
(15), could prevent TCDD from decreas-
ing glucose uptake. The results shown in
Table 3 indicate that this Ah receptor
blocker actually increased glucose uptake.
However, the effect ofTCDD was minimal
in cells treated with 4,7-phenanthroline as
compared to those untreated with this
blocker. In Table 4 the ability of two PBC
congeners, known to differ in their activity
as an agonist for the Ah receptor (16), were
compared to TCDD for their ability to
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inhibit glucose uptake. As expected, TCDD
was the most potent inhibitor of specific
glucose uptake followed by 3,3,4,4' and
2,2',5,5'-tetrachlorobiphenyl (both tested
at 10-7 M). The rank order of inhibition of
glucose uptake matches the rank order for
these compounds as Ah receptor agonists.

The combined actions ofTCDD and a
series of different hormones on glucose
uptake are presented in Table 5. These glu-
cose uptake assays were preformed on sepa-
rate days using separate groups of differen-
tiated adipocytes. Data presented in Table 5
are corrected for nonspecific binding of
3H-Me-glc. The thyroid hormones T and
T4, TNFX, TCDD, and the antibody
against TNFa all significantly (p < 0.05,
two-tailed Student's t-test) reduced glucose
uptake over control. T4 and the antibody
against TNFa abolished the action of
TCDD to further reduce glucose uptake.
TNFa did not prevent a significant
(p<0.05, two-tailed, Student's t-test)
TCDD-induced reduction in glucose

Table 5. Combined action of TCDD and some hor-
mones on glucose uptake after 72-hr treatment of
NIH 3T3 LI adipocytes

Total glucose uptake
(pg 3-O-methyl-D-l1-3H]Jlucose/

1.5 million cells)
Hormone Control TCDD
Assay lb
No addition 16.9 ± 1.5 2.1 ± 0.2*
(acetone vehicle)

T3 5.0±0.1** 0.5±1.3t
TNFa 5.8 ± 1.7** 0.5 ±

Assay 2b
No addition 27.1 ± 2.6 2.9 ± 0.4*
(acetone vehicle)

T4 0.3 ± 1.3** 0.4 ± 0.3
Antibodies 3.7 ± 1.7** 7.7 ± 0.3
against TNF
TNFa 16.2 ± 1.5** 6.5 ± 0.5?

830-min incubation; means ± 1 SD; n = 3.
bThe combined action of TCDD and hormones
was investigated in two separate series of experi-
ments. Hormone concentrations in maintenance
media were 1 pg/ml epidermal growth factor, 1
ng/ml T. 10 nglml T3, 10 ng/ml tumor necrosis fac-
tor-a (TNFa), and 1 pg/ml of antibody against
TNFa. Cells were differentiated as described in
Materials and Methods and then media changed.
Maintenance media for treated cells contained
10.8 M TCDD with or without hormones, and cells
were exposed to TCDD and hormones for 72 hr
before the glucose uptake assay. Glucose uptake
assay contained 1 pCi 3H-Me-glc plus 13.3 mM
cold glucose.
*TCDD-treated cells had significantly lower 3H-
Me-glc uptake than the corresponding control
(no addition) (p. 0,05, two-tailed Student's t-test).
**Hormone-treated cells had significantly lower
3H-Me-glc uptake than the coresponding no addi-
lion (pS0.05, two-tailed Student's t-test).
The effect of TCDD was significant (p.0.05, two-
tailed, Student's t-test) as compared to the
matched cell preparation treated with a hormone
only.

uptake; nevertheless, the magnitude of
TCDD-mediated decrease was not as great
as for control and TCDD alone groups.

Discussion
Understanding of the process of glucose
transport and its regulation has rapidly
advanced over the last several years
(17,18). The NIH 3T3 LI preadipocyte
cell line has served as a model system for
investigations into glucose transport and
was chosen for these investigations both for
its widespread use as an in vitro model of
adipose tissue function and because of its
origin from TCDD-responsive Swiss albino
mice. Initial experiments indicated TCDD
inhibited glucose transport in 3T3 LI
adipocytes (Table 1). We have been inter-
ested in the key question of how TCDD is
regulating glucose uptake and what types
of glucose-transporting mechanisms
TCDD affects. If cytochalasin B, a specific
inhibitor of the facilitative glucose trans-
porters GLUT 1 and GLUT 4 present in
differentiated 3T3 LI cells (10,19,20), and
TCDD were acting on separate glucose-
transport mechanisms, the affects ofTCDD
and cytochalasin B could be expected to be
additive. However, they are not. The level
of reduction of 3H-Me-glc uptake is always
the same magnitude for both TCDD and
cytochalasin B treatment, and it could not
be decreased further by treatment of cells
with a combination of both of these
agents. When nonspecific binding of 3H-
Me-glc was determined with cytochalasin B
and corrected for, the inhibition of glucose
uptake by TCDD became highly significant.
3H-Me-glc uptake values then changed
from about 15% inhibition by TCDD to
about 90% inhibition for values corrected
for nonspecific binding.
TCDD consistently inhibited glucose

transport in 3T3 Li adipocytes in a time-
and dose-dependent manner, the effects of
TCDD becoming statistically significant at
a dose of 10-9 M (Fig. 1) and at 30 min
(Fig. 2). The total percent inhibition of
glucose uptake did vary between experi-
ments and may be related to two factors:
state of differentiation and length of time the
cells were in culture after differentiation.
The 3T3 LI cell line is propagated as an
undifferentiated preadipocyte, which has a
fibroblastlike morphology. The cells are
induced to differentiate by adding high lev-
els of insulin, dexamethasone and methyl-
isobutyl xanthine to the cell media. We
observed variation in the extent of differen-
tiation of preadipocytes into adipocytes
between different replicates of cells. For
replicates containing larger numbers of fully
differentiated cells (cells containing large
lipid storage vacuoles), the values for spe-
cific glucose uptake were greater. Length of
time in culture after differentiation of the

cells may also have been a factor because
insulin alters glucose transporter number
and function (21), and chronic treatment
of 3T3 LI adipocytes with insulin results
in the downregulation of the GLUT 4 in
3T3 LI cells (22). For reasons discussed
below, GLUT 4 may be important for the
effects ofTCDD.

With regard to the nature of GLUT
affected by TCDD, we compared the
actions of TCDD in differentiated and
undifferentiated cells to determine which
of the two facilitative glucose transporters,
GLUT 4 or GLUT 1, is affected by the
actions of TCDD. In undifferentiated
cells, GLUT 1 is the only glucose trans-
porter present (19), whereas differentiation
of these cells by exposure to insulin, dex-
amethasone, and methylisobutyl xanthine
causes the induction of the GLUT 4 form
of the facilitative glucose transporter to levels
higher than that of GLUT 1 (20). When
differentiated and undifferentiated cells
were compared, the percent inhibition of
glucose uptake by TCDD (Table 2) was
larger for differentiated cells, being about
90% versus 40% for undifferentiated cells.
Additionally, the total quantity of glucose
uptake was increased by differentiation.
Percent inhibition of glucose transport by
TCDD was greater in the presence of 13.3
mM cold D-glucose than in the absence of
cold D-glucose. Of the two GLUTs present
in differentiated 3T3 Li cells, GLUT 4 has
a lower glucose affinity (Km = 5 mM) than
GLUT 1 (Km<I mM) (23). The results
shown in Table 1 are consistent with the idea
that TCDD produces a greater reduction
in the quantity of the low affinity, GLUT
4, form of the glucose transporter. Results
in Table 2 show that GLUT 4 is more sus-
ceptible to the action of TCDD, though
GLUT 1 is also affected by TCDD. Data
from in vivo and in vitro explant tissue cul-
ture studies in guinea pig adipose tissue are
consistent with TCDD acting to reduce
the number ofGLUT 4 transporters (7,8).

The best-characterized mechanism for
the action of TCDD involves the recently
cloned Ah receptor (24), cytosolic receptor
that binds TCDD and other HAHs and is
then translocated to the nucleus, where it
acts as a transcription factor to regulate
gene expression (25). The reduction ofglucose
uptake in 3T3 LI adipocytes in response
to active and inactive congeners of
tetrachlorobiphenyls (Table 4) correlates
with other biological responses to dioxins
(e.g., ethoxyresorufin O-demethlyase activ-
ity), which are mediated through the Ah
receptor (16). Furthermore, such an affect
ofTCDD is antagonized by an Ah recep-
tor blocker, 4,7 phenanthroline (15)
(Table 3). Our data are also consistent
with the results found in vivo and in vitro
for guinea pig adipocyte tissue in which
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reduction in glucose uptake correlated with
the relative affinity of several dioxin con-
geners toward the Ah receptor (7).

The similarity of the action pattern of
TCDD to thyroid hormones (25) has
already been noted. We were interested in
examining the effect of thyroid hormones
on glucose transport alone and in combi-
nation with TCDD to ascertain if these
two agents might share a common mecha-
nism in 3T3 L1 cells. We found that the
thyroid hormones T3 and T4, like TCDD,
significantly reduced glucose uptake in dif-
ferentiated 3T3 LI cells (Table 5). In con-
trast, studies by Kuruvulla et al. (26) found
that T3 stimulates glucose uptake and
increases GLUT 1 mRNA in a nontrans-
formed liver cell line, and studies by Casla
et al. (27) found stimulation of glucose
uptake and increased levels of GLUT 4
protein in muscles of hyperthyroid rats.
However, these studies were in different
tissues and, especially in the case of muscle
tissue, hyperthyroidism increases general
glucose requirements. Since hyperthy-
roidism reduces adipose tissue mass, differ-
ences in glucose transport between 3T3 LI
cells and liver cells or muscle may be based
on differences in organ responses to the
thyroid hormones.

We did observe that T4, and to a lesser
extent T3, antagonized the ability of
TCDD to further reduce glucose uptake
beyond the level already achieved by these
thyroid hormones. Though these studies
with hormones -do not prove that TCDD
and any of the hormones are acting on the
same site or through the same mechanism,
they are consistent with observations that
TCDD and the thyroid hormones share
similar effects and might share some common
biochemical mechanisms. Clearly, the titer of
functionally active glucose transporter pro-
teins are readily modulated by these hor-
mone-type substances as well as TCDD.

In summary, the present study extends
previous in vivo and in vitro work docu-
menting the TCDD-mediated inhibition
of glucose uptake (7,8). Furthermore, it
has established the sensitivity of GLUT 4
to TCDD using the in vitro NIH 3T3 Li
preadipocyte model system. Experimental
evidence is consistent with TCDD inhibit-
ing glucose uptake by regulation ofGLUT
4 and, to a lesser extent, GLUT 1 through
a mechanism involving the Ah receptor.
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